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ABSTRACT

The value of the model output statistics (MOS) approach to improving 6-10-day and week 2 probabilistic
forecasts of surface temperature and precipitation is demonstrated. Retrospective 2-week ensemble * reforecasts”
were computed using a version of the NCEP medium-range forecast model with physics operational during
1998. An NCEP-NCAR reanalysis initial condition and bred modes were used to initialize the 15-member
ensemble. Probabilistic forecasts of precipitation and temperature were generated by a logistic regression tech-
nique with the ensemble mean (precipitation) or ensemble mean anomaly (temperature) as the only predictor.
Forecasts were computed and evaluated during 23 winter seasons from 1979 to 2001.

Evaluated over the 23 winters, these M OS-based probabilistic forecasts were skillful and highly reliable. When
compared against operational NCEP forecasts for a subset of 100 days from the 2001-2002 winters, the MOS-
based forecasts were comparatively much more skillful and reliable. For example, the MOS-based week 2
forecasts were more skillful than operational 6-10-day forecasts. Most of the benefit of the MOS approach could
be achieved with 10 years of training data, and since sequential sample days provided correlated training data,
the costs of reforecasts could also be reduced by skipping days between forecast samples.

MOS approaches will still require alarge dataset of retrospective forecastsin order to achieve their full benefit.
This forecast model must remain unchanged until reforecasts have been computed for the next model version,
a penalty that will slow down the implementation of model updates. Given the substantial improvements noted
here, it is argued that reforecast-based MOS techniques should become an integral part of the medium-range
forecast process despite this cost. Techniques for computing reforecasts while minimizing the impact to oper-

ational weather prediction facilities and model development are discussed.

1. Introduction

Improving weather forecasts is a primary goal of the
National Oceanic and Atmospheric Administration
(NOAA) and other weather services. One commonly
emphasized way to improve weather predictions has
been to improve the accuracy of the numerical forecast
models. Much effort has been expended to improve the
estimate of the initial condition (e.g., Daley 1991; Par-
rish and Derber 1992; Courtier et al. 1994; Houtekamer
and Mitchell 2001), to conduct forecasts with higher-
resolution numerical models (e.g., Weisman et al. 1997;
Kalhay et al. 1998; Buizza et al. 2003), and to incor-
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porate more complex physical parameterizations of pro-
cesses that occur below the grid scale. Within the last
decade, ensemble forecast techniques (e.g., Toth and
Kalnay 1993, 1997; Molteni et al. 1996; Houtekamer et
al. 1996) have aso been embraced as atool for making
probabilistic forecasts and for filtering the predictable
from the unpredictable scales (via ensemble averaging).

There are forecast situations that are so intrinsically
difficult that skill has not improved much despite the
investment in large new computers and despite the mil-
lions of person hours invested in model development
over the last 40 years. Medium-range weather fore-
casting is one such endeavor. The skill of these forecasts
is marginal because of the inevitable rapid growth of
errors through chaos (e.g., Lorenz 1969) and because
of the steadier growth of model errors. In order to make
a skillful medium-range forecast, forecasters must thus



JUNE 2004

be able to adjust for model systematic errors and be able
to distinguish between features that are predictable and
those that are unpredictable. As will be shown later,
unprocessed numerical guidanceis often not particularly
useful; for example, probability forecasts that are de-
rived from the National Centers for Environmental Pre-
diction (NCEP) ensemble forecasts' relative frequency
have no skill and are highly unreliable.

The format of forecasts issued by the NCEP Climate
Prediction Center (CPC) implicitly reflects a judgment
of what can be predicted skillfully and what cannot.
Day-to-day details of synoptic-scale features are con-
sidered largely unpredictable, while shifts in the prob-
ability density function of averages over several days
may be predictable. Consequently, CPC produces prob-
ability forecasts of time averages of the deviations from
climatology. Specifically, CPC makes 6-10-day and
week 2 (8-14 day) forecasts of daily average surface (2
m) temperature and precipitation tercile probabilities.
These are forecasts of the probability that the temper-
ature and precipitation averaged over these periods will
be below the 33d or above the 67th percentile of the
distribution of climatological observed temperatures
and precipitation. Forecasters at CPC synthesize infor-
mation from the NCEP ensemble prediction system as
well as models from other weather services and other
statistical tools. As will be shown, the skill of opera-
tional week 2 forecasts is currently quite low.

Another possible way of improving weather forecasts
is to adjust the forecast model output based on a da-
tabase of retrospective forecasts from the same model.
The adjustment of dynamically based forecasts with sta-
tistical models has arich history. Model output statistics
(MQOS) techniques (Glahn and Lowry 1972; Woodcock
1984; Glahn 1985; Tapp et al. 1986; Carter et al. 1989;
Vislocky and Fritsch 1995, 1997) have been used widely
since the 1970s. However, in recent years, the National
Weather Service (NWS) has de-emphasized the use of
MOS techniques based on fixed models; such an ap-
proach requires a large sample of forecasts from the
same model to achieve their maximal benefit. Thisim-
plies that alarge number of retrospective forecasts must
be run prior to implementation of a new model version
and that the current forecast model be *‘frozen™ until
retrospective forecasts are computed for any planned
new model version; changing the model numerics may
change the forecasts error characteristics, invalidating
the regression equations devel oped with the prior model
version. Consequently, decision makers at many weath-
er prediction facilities have judged that forecast im-
provements will come much more rapidly if the model
development is not slowed by the constraints of com-
puting these retrospective forecasts.

Statistical algorithms like MOS improve on raw nu-
merical forecasts by implicitly removing model biasand
filtering the predictable from the unpredictable. Given
the difficulty of doing this without statistical models,
and given the marginal skill of current week 2 weather
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forecasts, we reconsider the value of statistical weather
forecasting for this application. Specificaly, we ex-
amine here whether a reduced-resolution ensemble pre-
diction system calibrated from a set of prior numerical
forecasts can produce forecasts that are more skillful
than the products generated by human forecasters based
on a variety of state-of-the-art, higher-resolution mod-
els. A T62, 28-level version of NCEP's Medium-Range
Forecast (MRF) modeling system based on 1998 model
physics was used to run ensemble *‘reforecasts’ over
the period 1979-2001. Statistically adjusting current
T62 forecasts based on these prior forecasts is shown
to produce substantial improvements in forecast skill,
greatly exceeding the skill of the operational forecasts.
We document the skill of these forecasts and examine
how many retrospective forecasts are necessary to ap-
proach optimum skill. Given the improvements pro-
duced through the use of statistical techniques, we pro-
pose that reforecasting and the application of MOS-like
statistical techniques should become an integral part of
the medium-range numerical weather prediction pro-
Cess.

Below, section 2 will outline the forecast modeling
system and provide details on the general statistical ap-
proaches used. Section 3 presents results, and section 4
concludes with a discussion of the implications of this
research.

2. Experiment design

a. Forecast model, initial conditions, and verification
data

A T62 resolution (roughly 200-km grid spacing) ver-
sion of NCEP's MRF model (Kanamitsu 1989; Kan-
amitsu et al. 1991; Caplan et a. 1997) was used to
generate an ensemble of 15-day forecasts over a 23-yr
period from 1979 to 2001. Further details regarding the
model formulation can be found in Newman et al.
(2003).

A 15-member ensemble was produced every day of
the 23 years with 0000 UTC initial conditions. The en-
semble initial conditions consisted of a control initial-
ized with the NCEP-National Center for Atmospheric
Research (NCAR) reanalysis (Kalhay et al. 1996) and
a set of seven bred pairs of initial conditions (Toth and
Kalnay 1993, 1997) recentered each day on the reanal-
ysis initial condition.

Forecasts were evaluated in two ways. First, the pro-
posed MOS-based forecasts, described below, were
evaluated over winter seasons [December—January—
February (DJF)] in a 23-yr period from 1979 to 2001.
A set of 484 stations in the conterminous United States
(CONUS), Alaska, and Hawaii were used for this com-
parison. The large majority of these stations are in the
conterminous United States (all dots in Fig. 1). These
484 stations were chosen as the subset of available co-
operative network (co-op) stations with at least an 80%
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FiG. 1. Locations at which statistical forecast algorithmswere eval-
uated in the conterminous United States. Filled circles indicate the
subset of 153 stations where comparison of reforecast and CPC are
performed for 100 days during the 2001 and 2002 winters. The union
of filled and unfilled circles are the stations where the reforecast MOS
agorithm is evaluated from 1979 to 2001.

complete record (Eischeid et al. 2000) from 1979 to
2001. Second, the MOS-based forecasts were compared
against CPC operational forecasts for a set of 100 days
during the winters of 2001 and 2002 (JFD 2001 and JF
2002). This comparison was performed at the subset of
153 stations where CPC forecasts were available (dark-
ened dotsin Fig. 1). The observed climatology used in
these experiments was determined from 1971-2000
data, consistent with CPC practice.

b. Logistic regression model and forecast/eval uation
process

Following the format of operational 6-10-day and
week 2 forecasts produced at CPC, we produced fore-
casts of the probability distribution of precipitation and
surface temperature at the stations. Probabilities were
set for three categories, the lower, middle, and upper
tercile of the distribution of observed anomalies from
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the mean climatological state. The method for deter-
mining the upper-and lower-tercile anomaly boundaries
(T, and T, respectively) is discussed below.

A logistic regression technique (e.g., Wilks 1995; Ap-
plequist et al. 2002) was used for this experiment; the
spatially interpolated ensemble mean forecast (precip-
itation) or forecast anomaly (surface temperature) was
the only predictor. Separate regression analyses were
performed for each observation location. By regressing
on the ensemble mean rather than a single forecast, we
exploited the ability of ensemble averaging to filter out
the smaller, unpredictable scales and retain the larger,
predictable ones.

Thelogistic regression model sets the probability that
the observed anomaly V will exceed T,, or T, ac-
cording to the equation (here, for the upper tercile)

1+ oo+ Ay

where x is the ensemble mean forecast or forecast anom-
aly, B, and B, are fitted regression coefficients.

We tested other possible predictors to use in the lo-
gistic regression analysis. A regression analysis using
only the control forecast rather than the ensemble mean
provided less skill, as discussed |ater. A regression anal-
ysis in the space of the leading canonical correlates
(Wilks 1995) was less skillful than one assuming in-
dependent coefficients at each grid point. Similarly,
some obvious candidates such as ensemble spread did
not improve forecast accuracy. Figure 2 illustrates why
spread was not a useful predictor; correlations of en-
semble mean error and spread were uniformly low, nev-
er exceeding 0.2. It was not clear whether a stronger
spread—skill relationship ought to exist at these scales
and lead times. It is known that accurate estimates of
spread require larger ensembles than accurate estimates
of the mean (Compo et al. 2001) and that the current
breeding method for generating perturbations is sub-
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Fic. 2. Rank correlation between spread ensemble mean error using DJF samples from 1979 to
2003.
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optimal (Hamill et al. 2000; Wang and Bishop 2003),
so perhaps a stronger spread-skill is possible.

The process for producing and evaluating MOS fore-
casts is described here for week 2 forecasts of upper-
tercile probabilities of surface temperature. Lower-ter-
cile probabilities and 6-10-day probabilities were han-
dled in an identical manner. Precipitation was handled
somewhat differently and is described later. A separate
regression analysiswas performed for each day and each
station. The regression parameters were determined us-
ing a dataset of ensemble mean forecast and observed
week 2 anomalies from climatology. From these we
compute the associated binary verification data: [P(V >
T,, = 1] if the observation anomaly was above the
upper tercile, and [P(V > T,, = 0] if the observation
anomaly was less than or equal to the the upper tercile.
Regression coefficients were determined through a
cross-validation approach (Wilks 1995) to ensure the
independence of the training and evaluation data. For
example, given 23 years of available forecasts, when
making forecasts for a particular year, the remaining 22
yr were used as training data. The same 22 yr were used
to define the forecast climatology. The observation cli-
matology was fixed using 19712000 data.

The generation and evaluation of tercile probability
forecasts followed a three-step process. The process is
described for a week 2 forecast; an identical process
was used for the 6-10-day forecasts. The three steps
were

1) Train: (a) Calculate a daily running mean climatol-
ogy of the week 2 forecast and week 2 observed
values individually for each station. The observed
climatology used observations from 1971 to 2000;
the forecast climatology used forecasts from 1979 to
2001. The year for which the forecast is being made
is excluded from the forecast climatology. For agiv-
en year and day of the year, the forecast climatol ogy
was the week 2 value averaged over all sampleyears
and the 31 days (15 before, 15 after) centered on the
date of interest. The process was repeated for each
year and day of the year. (b) Determine the forecast
and observed anomaly by subtracting the respective
climatologies. (Repeat this for each year, day, and
station.) (c) Generate a training dataset of 22 X 31
samples of week 2 ensemble mean forecast anom-
alies and week 2 observed anomalies using a 31-day
window centered on the day of interest. (Repeat for
each year, day, and station.) (d) Set the observed
upper-tercile anomaly T,,; as the 67th percentile of
the sorted observed anomaly data. (Repeat for each
year, day, and station.) (e) Create the 22 X 31 binary
verification data samples. Each sample verification
is categorized as being above the upper tercile [P(V
> T,, = 1] or below or equal to it [P(V > T,; =
0]. (Repeat for each year, day, and station.) (f) De-
termine 3, and 3, through logistic regression using
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6—10 Day SfeT Fest v. Ver,
~ Oregon, January 16

- —

w
L |

0.50

0.25

Observed Anomaly (°C)
[=]
T

(1048 Jaddn < Jsp)d

|
w
L

=10

0.00

-9 0 3
Forecast Anomaly (°C)

10

Fic. 3. Illustration of logistic regression method. Ensemble mean
6-10-day forecast anomaly and corresponding 6-10-day observed
anomaly are plotted for 16 Jan at Medford, OR. Upper and lower
terciles are denoted by dashed lines. Red dots are samples with ob-
served anomalies above the upper tercile; blue dots below. Vertical
lines denote bin thresholds for setting tercile probabilities based on
the relative frequencies of observed values above the upper tercile.
Thick horizontal lines denote the probabilities associated with each
bin (refer to probabilities labelled on the right-hand side). Dotted
curve denotes the upper-tercile probabilities determined by logistic
regression.

the ensemble mean anomaly as the only predictor.
(Repeat for each year, day, and station.)
Forecast: Produce tercile probability forecasts for
each year, day, and station in DJF using Eq. (1).
Figure 3illustrates the process for determining the
regression model for surface temperatures, here for
6-10-day forecasts at Medford, Oregon, on 16 Jan-
uary. A scatterplot of the ensemble mean 6-10-day
forecast anomaly was plotted against the correspond-
ing week 2 observed anomaly using the 22 years X
31 days of samples. From the observed data, the
upper and lower terciles were calculated (horizontal
dashed lines). Sample points where P(V > T,,) =
1 are denoted with red dots, and points where P(V
> T,,;) = 0 with blue dots. If one were to set the
upper-tercile probabilities just using the relative fre-
quencies of observed values in a bin around a fore-
cast value (the bin limits denoted by the vertical
lines), then the average bin probabilities would be
denoted by the horizontal solid lines. For example,
counting all the forecasts with an anomaly between
—6° and —4°C and tallying how often the observed
anomaly exceeds the upper tercile, the probability
was approximately 9%. When all the samples were
supplied to the logistic regression, probabilitieswere
determined as a smooth function of the forecast
anomaly according to the dotted curve.

2)
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3) Evaluate: After forecasts have been produced for
each day in DJF for each of the 23 yr using this
cross-validation process, evaluate the forecast ac-
curacy using the ranked probability skill score
(RPSS) and reliability diagrams (Wilks 1995).

To determine the RPSS, let y; = [V, Va0 YailT
represent the probabilities assigned to each of the
three categories for the ith forecast of n samples.
Similarly, denote an observation anomaly binary
probability vector for the ith forecast, o, = [0,;, 0,;,
0,,]7; for example, if the observed anomaly was|ow-
er than T,;, 0, = [1, O, Q]". Define cumulative fore-
cast and observation functions:

Y, = (Yl,iv Yo Y3,i)T

= [Yois (Vo + Yoi)y (Vi + Yo T )17 (D
and
O, = (O, Oy, O5))7
= [0y, (0; + 0,;), (0; + 05, + 05)]". (3)

The ranked probability score of the forecast is then
defined as

n 3
RPS, = 2 2, (Y~ O @
i=1 j=
The RPSS can then be calculated as
RPS
RPSS =1 — , 5
RF)S(:Iim ( )

where RPS,,,, is calculated assuming the climato-
logical forecast probabilities for the three tercile

anomalies are [1/3, 1/3, 1/3].

Precipitation forecasts used a slightly modified re-
gression method. Ensemble mean precipitation forecasts
and observed values were used without removing the
climatological mean. Also, because precipitation fore-
cast and observation data tend to be nonnormally dis-
tributed, the precipitation forecasts and observations
were power transformed before applying the logistic
regression. Specifically, if x denotes the ensemble mean
forecast, we generated a transformed forecast X accord-
ing to X = x°%, and X was used as the predictor. The
processisillustrated in Fig. 4. The power transformation
of observations is convenient for illustration purposes
but does not change forecast skill.

Some stations were so dry that precipitation terciles
were impossible to define. For example, in late January
in Phoenix, Arizona, approximately p = 60% of the
week 2 observed samples had no rainfall. Hence, the
33d percentile of the distribution was zero, but so were
the 50th and 60th percentiles. Special ruleswere needed
for such cases. We decided to use the following rule:
in the case of more than 33% zero samples in the ob-
served climatology, the lower-tercile threshold was de-
fined as the smallest nonzero precipitation value. Hence,
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6—10 Day Precip Fest v. Ver,
~ Qregon, January 16
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FiG. 4. lllustration of logistic regression process for 6-10-day pre-
cipitation. Data is for Medford, OR, on 16 Jan. (a) Scatterplot of
ensemble mean forecast precipitation amount vs observed amount
(determined from an average of all observations inside the 2.5° X
2.5° grid box). Horizontal dashed lines denote lower and upper ter-
ciles. (b) As in (a), but after power transformation. Additionally,
vertical black lines denote bin thresholds as in Fig. 3, and thick
horizontal solid black lines denote estimated probabilities determined
by relative frequency. Dotted curve denotes the upper-tercile prob-
abilities determined by logistic regression.

for the lower tercile, step 1(e) above produces a binary
set of observed probabilities analogous to a probability
of precipitation (POP); that is, a 1 was assigned to non-
zero precipitation events and a zero was assigned to
zero precipitation events. Similarly, when evaluating the
skill score relative to climatology at such points, the
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Fic. 5. Reliability diagrams week 2 tercile probability forecasts for surface temperature. DJF forecast data was used from the period 1979—
2001, evaluated over the Northern Hemisphere north of 20°N. Dashed line denotes lower-tercile probability forecasts, solid line denotes
upper-tercile probability reliability. Inset histograms indicate frequency with which extreme tercile probabilities were issued. (a) Probabilities
estimated from raw ensemble relative frequency; (b) asin (a), but with model bias removed before computation of ensemble frequency; (c)
asin (b), but where bias correction is based on the past 45 days; and (d) expected RPSS as a function of the correlation between the ensemble

mean forecast and verification (see text for details).

probabilities assigned to the three categories were no
longer [1/3, 1/3, 1/3], but [p, 2/3 — p, 1/3]. During DJF,
there were no stations where there were more than 2/3
of the samples with zeros.

3. Results

Before discussing the results using the MOS algo-
rithm, we note that probability forecasts derived from
the raw ensembl e have essentially no skill. For example,
Fig. 5a shows the reliability diagram for surface tem-
perature forecasts over 23 years as derived from ensem-

ble relative frequency, verified over the Northern Hemi-
sphere north of 20°N latitude. The reliability of tercile
forecasts for the upper and lower terciles were different
from each other (due to model bias), and the RPSS was
near zero (for this reason, operational CPC forecasts are
not based primarily on the raw ensemble probabilities;
instead they rely on guidance from a number of ensem-
ble forecast systems and statistical methods. Removing
the model bias (by computing forecast anomalies rela-
tive to the 23-year model climatology rather than the
observed climatology) improved the forecasts, resulting
in an RPSS of 0.10 (Fig. 5b). However, bias correction
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FiG. 6. Asin Fig. 5b, but for CDC 6-10-day reforecast based MOS
tercile probability forecasts of (a) surface temperature and (b) pre-
cipitation, evaluated at 484 stations in the United States and Guam.

100

alone did not greatly improvethe calibration (reliability)
of the forecasts. If the bias correction were determined,
say, from only the last 45 days of forecast, the forecasts
were poorly calibrated and had no skill (Fig. 5¢).

a. Skill using full reforecast dataset

How much should we expect the RPSS to improve
by using the reforecast MOS methodology? If we as-
sume that the forecast and observed surface tempera-
tures have Gaussian statistics, and that the spread of the
ensemble does not vary much from day to day (an as-
sumption supported by the low spread—error correlations
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Fic. 7. Asiin Fig. 6, but for week 2 MOS forecasts.

shown in Fig. 2), it is possible to relate the temporal
correlation between the ensemble mean forecast and the
verifying analysis to the expected RPSS of tercile prob-
ability forecasts. Thisisdone by creating correlated time
series (representing the ensemble mean forecast and the
corresponding verification) by drawing two random
samples from a bivariate normal distribution having a
specified correlation. Since the variance of the forecast
and analysis distributions are fixed (and known), the
tercile probabilities can be calculated given the ensem-
ble mean forecast value by integrating the cumulative
distribution function for a Gaussian. Figure 5d shows
the expected RPSS for tercile probability forecasts as a
function of correlation calculated in this manner. After
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Fic. 8. The 6-10-day MOS forecast RPSS as a function of station location: (a) surface temperature
and (b) precipitation.

removing the forecast bias, the average temporal cor-
relation between the week 2 ensemble mean and ana-
lyzed surface temperature for al Northern Hemisphere
grid points in winter is 0.504. From Fig. 5d, we would
then expect an RPSS after MOS calibration of ~0.16.

How much skill, then, do the MOS-based reforecasts
have? Figure 6 presents the skill and reliability of 6—
10-day probabilistic forecasts using the reforecast MOS
methodology, and Fig. 7 presents the same for the week
2 forecasts. These forecasts are significantly more skill-
ful than those produced by raw ensemble counts or bias-
corrected ensembles. For example, the MOS-based
week 2 surface temperature forecasts achieve an RPSS
of 0.15 and are highly calibrated, suggesting that they
have extracted nearly all of the potential skill that can
be extracted from this forecast dataset, as indicated by
Fig. 5d. Further improvements in RPSS are not likely
without increasing the correlation between the ensemble
mean forecast and the analysis.

Extreme probabilities are issued less frequently than
they were when based on the raw ensemble (Fig. 5a),
but when they are issued, they are highly reliable. Fig-

ures 6 and 7 aso illustrate that there was more skill in
temperature than precipitation and substantially more
skill for 6-10-day forecasts than for week 2 forecasts.
Forecasts using the ensemble mean as a predictor in the
logistic regression were somewhat more skillful than
those using the control run (6-10-day RPSSs were 0.24
and 0.06 for temperature and precipitation using the
control, and 0.11 and 0.02 for week 2 forecasts, re-
spectively). The forecasts were sharper (i.e., extreme
probabilities issued more frequently) for 6-10-day fore-
casts than for week 2 forecasts; this was to be expected,
for the longer-lead forecasts should more closely resem-
ble the climatological distribution of [1/3, 1/3, 1/3] a-
ways being issued. Surface temperature forecasts were
sharper than precipitation forecasts. Generally, many
prior studies have found that precipitation is one of the
most difficult elements to predict. These results rein-
force this general conclusion.

The geographic variations in forecast skill are illus-
trated in Figs. 8 and 9. Surface temperature forecasts
were most skillful in the eastern United States and the
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Fic. 9. Asiin Fig. 8, but for week 2 forecasts.

Ohio Valley. Precipitation forecasts were most skillful
along the West Coast.

b. Comparison against operational NCEP forecasts

The skill of temperature and precipitation forecasts
in Figs. 6 and 7 may seem unimpressive at first glance.
However, most prior studies have shown marginal or
nonexistent skill for these longer-lead forecasts. For ex-
ample, Eckel and Walters (1998) showed that even after
recalibration with a short training dataset, daily precip-
itation forecasts based on the MRF had negative skill
beyond day 6. The key question is whether CDC's re-
forecast based MOS forecasts improved upon the pre-
sumed state of the art, operational NCEP/CPC forecasts.
We compared the two using a set of 100 days of DJF
data from the 2001-2002 period at the subset of 153
stations shown in Fig. 1 (darkened dots). Independent
data prior to the year 2001 were used to train the CDC
reforecast MOS algorithm.

Figures 10 and 11 show reliability diagrams and
RPSSs for the CDC reforecast and operational CPC 6—
10-day forecasts, respectively. Figures 12 and 13 pro-

vide the week 2 forecast diagrams. With a smaller sam-
ple size, the CDC reforecasts were less reliable than
they were when validated over al 23 yr, as was to be
expected from a smaller sample size (Wilks 1995, Fig.
7.9f). However, the reforecasts were significantly sharp-
er and more reliable than the operational CPC forecasts
and hence much more skillful. In fact, the CDC refore-
casts were more skillful at week 2 than the CPC fore-
casts were at 610 days. Equivalently, thisindicatesthat
over these two winters, the application of the MOS ap-
proach increased the effective forecast lead time by sev-
eral days.

c. Skill with smaller training samples

The less computationally demanding it is to compute
these reforecasts, the more likely the operational centers
are to adopt these techniques. We thus examined how
much less forecast skill will result when less than the
full 22 years of training data are used. We found that
the logistic regression scheme occasionally was unable
to generate forecasts with only 1 year of data; more was
needed for computational stability. Figure 14 plots the
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Fic. 10. Asin Fig. 6, but for CDC 6-10-day MOS forecasts
validated during the winters of 2001-2002.

100

RPSS of the forecasts for training samples of various
sizes. Most of the usable skill has been obtained once
~10 years of training data is available. Most likely,
another decade of reforecasts are not worth the extra
computational burden.

Another possibility isthat if, say, computational con-
siderations prohibit more than 4 yr of reforecasts, these
reforecasts could span anywhere from 4 to 20 yr of
meteorological conditions by skipping 1 to 5 days be-
tween cases (though the control run and breeding cycle
would need to be run every day). Figure 15 illustrates
that indeed, if there is a fixed upper limit to the number
of reforecasts that could be computed, MOS based on
asample of reforecasts that were composed of atraining
dataset with more days between samples was more skill-
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Fic. 11. Asin Fig. 10, but for NCEP/CPC operational
6-10-day forecasts.

ful than those based on a set with fewer days between
samples. For surface temperature, given 5 days between
samples, 4 years worth of training data produced prob-
abilistic forecasts that were almost as skillful as those
obtained with the full 22-yr training data. The improve-
ment by skipping daysis aresult of a sample that spans
a wider range of meteorological scenarios. Forecasts
separated by 1 day had strongly correlated errors; the
1-day lagged autocorrelation of week 2 precipitation
error was 0.75, with atemperature error autocorrelation
of 0.85.

4. Discussion and conclusions

Improving forecasts through the use of MOS tech-
niques applied to frozen model s has been de-emphasized
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Fic. 12. Asin Fig. 10, but for CDC week 2 MOS forecasts.
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during the past decade. These techniques require that a
large sample of forecasts and associated verification data
be available for the regression analysis. This additional
computational burden could potentially slow down the
implementation of model changes. In this article, we
have shown that dramatic improvements in medium-to
extended-range probabilistic forecasts are possible using
MOS techniques and a frozen forecast model. Using a
T62 version of the MRF model and 22 years of training
data, it was possible to make probabilistic week 2 fore-
casts that were more skillful than the current 6-10-day
operational forecasts during the 2001-2002 winters.
This improvement occurred despite the fact that oper-
ational forecasts utilize larger ensembles with higher-
resolution, more highly developed models, and multiple
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models—but without knowledge of their error charac-
teristics.

Based on these results, NCEP has agreed to take over
the daily production of the reforecasts and will be in-
tegrating this process into their daily operations. (Until
they do, prototype reforecast products will be available
online at http://www.cdc.noaa.gov/~jsw/refcst.)

Down the road, this or a similar technique may be
desirable to apply to a newer version of the forecast
model, perhaps at higher resolution. In subsequent tests,
can the computational expense of these reforecasts be
reduced? Yes. Most of the skill improvement was re-
tained with only 10 years of data. Also, if the training
process were constrained to, say, computing only 4 years
of reforecasts, it was preferable to compute reforecasts
over a 20-yr span, skipping 5 days between samples. In
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this way, a broader diversity of weather scenarios was
sampled. Computational expense may also be reduced
by using a smaller ensemble. We have found that the
skill of 6-10-day MOS forecasts of surface temperature
using only the control run was comparable to those ob-
tained using the 15-member ensemble mean (although

the differences for precipitation and week 2 forecasts
are larger). This is consistent with the notion that the
benefit of ensemble averaging is a function of the ratio
of the predictable signal (i.e., the ensemble mean anom-
aly) to the unpredictable noise (i.e., the ensemble
spread). Ensemble averaging produces the largest rel-
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7) when the full 22 years of cross-validated training data were used.
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ative increase in anomaly correlation skill when this
ratio is small, and the benefit of adding more ensemble
members decreases as this ratio increases (cf. Fig. 15
in Compo et al. 2001). Although we have not investi-
gated the impact of ensemble size here, it is possible
that most, if not al, of the skill of the MOS forecasts
could be recovered with asignificantly smaller ensemble
(Du et a. 2000, their Fig. 5).

Are there other ways of minimizing the impact on
operations and model development? Reforecastsare eas-
ily parallellizable, and the ideal reforecast computing
system need not compete for time on the production
computer system. Aslong as ensembleinitial conditions
have been precomputed, then many days of reforecasts
can be computed simultaneously on computers or CPUs
separate from the production system. For this experi-
ment, our hardware consisted of 72 CPUs. Each com-
pute node consisted of a 2.2-GHz Pentium processor
with a20-GB hard driveand 1-GB RAM. Theindividual
CPUs were not connected with any special hardware to
speed message passing. This equipment, including 2.5
TB of extrastorage, cost in total about $90,000 in 2002
U.S. dollars. It took approximately 10 months to com-
pute the full 23 yr of reforecasts at T62L 28 resolution
on this equipment. While operational centers may prefer
to compute such reforecasts with higher-resol ution mod-
els, by thinning the reforecasts as previously discussed,
it is likely that computer clusters on order of severa
hundreds of thousands of dollars may be suitable for
generating these reforecasts. The reforecasting tax thus
consists of the upfront cost of hardware and a small
staff to maintain the hardware and to run the forecasts
and develop the regression algorithms. The more often
the operational forecast model is changed, the more ex-
pensive the reforecast effort becomes, since the refore-
casts must then be completed more rapidly.

If the freedom to continually update the model is
deemed extraordinarily important, another possible
compromise is for operational facilitiesto run two mod-
el versions. One model version would be continuously
updated, as is done currently. A second version would
be the dedicated ‘‘reforecast’” run. This model would
operate unchanged until a full dataset of reforecasts are
available for the next model version.

It is possible that some model changes may further
improve the MOS-based forecasts. For example, the
MOS approach may be worth retesting with higher-res-
olution ensemble forecasts (Buizza et al. 2003) and im-
proved ensembl e perturbation methods that produce bet-
ter spread—skill relationships (e.g., Wang and Bishop
2003). If multiple, independent forecast models are
available, perhaps MOS approaches using multimodel
data may provide additional benefit.

Though this article has focused on the direct benefit
of MOS approaches, there are numerous other benefits
from computing a large number of reforecasts. Refore-
casts may facilitate the model development process, for
systematic errors that may not be apparent when model
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changes are tested on just a few cases may be more
obvious with the larger sample afforded by reforecasts.
Extreme weather events are of course more numerous
in longer training datasets, so forecast characteristics
during these important events can be determined. (CDC
is making the current reforecast dataset freely available
for download at http://www.cdc.noaa.gov/reforecast.)
This dataset may be useful for exploring other MOS
approaches, for predictability research, and for a host
of other applications.

In summary, we have shown that MOS approaches
can result in dramatic improvements to 6-10-day and
week 2 forecasts. Such approaches require a large da-
taset of retrospective forecasts and observations. Given
the substantial value added, weather forecast services
may wish to evaluate how they can incorporate these
statistical techniques into their forecast process.
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